Photonics Society at UCSB
  • Home
  • Members
    • Alumni
  • Calendar
  • Events
    • Lectures >
      • Industry Perspective Lectures
      • IPS Lectures
      • Student Lectures
      • Alumni Lectures
      • OSA Lectures
    • Outreach Events
    • Women in Photonics Week >
      • WIPW 2019
      • WiPW 2018
      • WiPW 2017
      • WiPW 2016
    • Light Science Workshop >
      • Light Science 2018
      • Light Science 2017
    • Day of Light >
      • Day of Light 2019
      • 2015 Symposium
    • Banquet >
      • Banquet 2019
      • Banquet 2016
      • Banquet 2014
    • Social Events
    • Sign-up for Student Talks
  • Education
    • Education Home
    • After-School Science >
      • Light-Pipes: Controlling Light
      • DIY Holograms
      • Color Mixing
      • LaserComm
      • Fluorescence
    • Classes
    • Outreach Events
    • Outreach Kits 2020
  • Pictures & Media
  • Online Calculators
    • Arrayed Waveguide Gratings >
      • Straight-Curved(fixed radius)-Straight
      • Straight-Curved-Straight
      • Straight-Curved
  • Home
  • Members
    • Alumni
  • Calendar
  • Events
    • Lectures >
      • Industry Perspective Lectures
      • IPS Lectures
      • Student Lectures
      • Alumni Lectures
      • OSA Lectures
    • Outreach Events
    • Women in Photonics Week >
      • WIPW 2019
      • WiPW 2018
      • WiPW 2017
      • WiPW 2016
    • Light Science Workshop >
      • Light Science 2018
      • Light Science 2017
    • Day of Light >
      • Day of Light 2019
      • 2015 Symposium
    • Banquet >
      • Banquet 2019
      • Banquet 2016
      • Banquet 2014
    • Social Events
    • Sign-up for Student Talks
  • Education
    • Education Home
    • After-School Science >
      • Light-Pipes: Controlling Light
      • DIY Holograms
      • Color Mixing
      • LaserComm
      • Fluorescence
    • Classes
    • Outreach Events
    • Outreach Kits 2020
  • Pictures & Media
  • Online Calculators
    • Arrayed Waveguide Gratings >
      • Straight-Curved(fixed radius)-Straight
      • Straight-Curved-Straight
      • Straight-Curved
Picture

Infrared Applications for Safe and Healthy Living - Dr. Perera

1/26/2021

 
Picture

Picture
Picture

​​Dr. Unil Perera
Regents’ Professor of Physics
Georgia State University


Friday, January 29th, 10 am (PST) 
​Infrared detectors and imaging systems are becoming increasingly important in a diverse range of astronomic, military, and civilian applications. This field has gained significant attention while incorporating various materials and architectures into detector designs with a strong focus on applicability into clinical domains. Dr. Perera will discuss recent detector structures, and his latest work on disease detection. Biomedical applications of infrared include an exploration of an Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable (ASSURED) diagnostic regimen and testing its clinical feasibility for inflammatory bowel diseases (IBDs) and cancer screening. A study using Fourier transform infrared (FTIR) spectroscopy in attenuated total reflectance (ATR) sampling mode analyzed  body fluids in order to identify reproducible,  stable,  and statistically significant differences  in spectral signatures of the IR absorbance spectra between the control and disease samples. These results show that serum samples can be used to detect the biochemical changes induced by these diseases. 
Picture
Image from https://doi.org/10.1038/s41598-017-17027-4
Picture
Image from https://doi.org/10.1038/s41598-017-17027-4
​Student’s t-test (two-tailed unequal variance) p-values of absorbance. Discriminatory region for lymphoma with higher significance (p < 0.05) are amide I of protein, amide II of protein, C-H bends of CH3/CH2 groups in α- and β- anomers, asymmetric phosphate I, and carbohydrates with predominant contributions nucleic acids (DNA/RNA via PO2 − stretches). Discriminatory regions of melanoma are amide I and carbohydrates with predominant contributions of nucleic acids.
Plots of the protein secondary structures (α-helix, β-sheet) and their ratio. (a) Quantified integral (area covered) values of α-helix components are less for tumorous cases compared to control. (b) Integral values of β-sheet components are higher for tumorous cases compared to control

Ultraviolet Optoelectronics for a Better Living - Prof. Mi

8/1/2020

 
Picture

Picture
Picture
Prof. Zetian Mi
University of Michigan, Ann Arbor

Tuesday, September 8th, 10 am (PDT) via Zoom
Meeting ID: 978 3569 2970  Passcode: 468555

Infectious diseases and water are some of the greatest, most urgent challenges of the 21st century. III-nitride ultraviolet (UV) light sources, including light emitting diodes (LEDs) and lasers, are the only alternative technology to replace conventional power-hungry, hazardous mercury lamps for disinfection and water purification. Recent studies showed that AlGaN-based UV-C LEDs can readily shred genetic material of viruses and bacterial and achieve 99.9% sterilization of SARS-COV-2. In this talk, I will present the recent advances of AlGaN and BN nanostructures and heterostructures and their applications in UV optoelectronics, including the first demonstration of mid and deep UV laser diodes and tunnel junction UV-C LEDs with significantly improved performance. The recent development of far-UV-C LEDs, in the wavelength range of 207-222 nm, will also be presented, which has shown to be faster and far more effective than traditional UV-C light (~265 nm) in preventing the transmission of microbial diseases, while causing virtually no harm to mammalian skin or eye.

Advanced Semiconductor Lasers - Dr. Shinji Matsuo

2/5/2020

 
Picture

Picture

Advanced Semiconductor Lasers: Ultra-low Operating Energy and Hetergeneous Integration with Si Photonics Devices



Dr. Shinij Matsuo​
NTT Device Technology Laboratories


Friday, February 7th from 12:00 - 1:00 pm in ESB 2001 
The electrical power consumed in data transmission systems is now hampering efforts to further increase speed and capacity at various scales, ranging from data centers to microprocessors. Optical interconnects employing ultra-low-energy directly-modulated lasers will play a key role in reducing the power consumption. Since a laser's operating energy is proportional to the size of its active volume, developing high-performance laser with a small cavity is important. For this purpose, we have developed DFB and photonic crystal (PhC) lasers, in which active regions are buried with an InP layer. Thanks to the reduction of cavity size and the increase in optical confinement factor, we have achieved an extremely small operating energy of 4.4 fJ/bit by employing a wavelength-scale PhC cavity. Cost reduction is also an important issue because a larger number of transmitters are required for short-distance optical links. For this purpose, Si photonics technology is expected to be a potential solution because it can provide large-scale photonic integrated circuits (PICs). Therefore, heterogeneous integration of III-V compound semiconductors and Si has attracted much attention. To fabricate these devices, we have developed wafer-scale fabrication  that employs regrowth of III-V compound semiconductors on directly-bonded thin InP templates on an SiO2/Si substrate. 
Picture
Dr. Matsuo discusses some of the equations related to semiconductor lasers.

Nanoscale Engineered Silicon Imagers

1/28/2020

 
Picture

Picture
Picture
Nanoscale Engineered Silicon Imagers Reaching Theoretical Limit of Performance and their Applications in Space Exploration and Synergistic Fields
​

​
Dr. Shouleh Nikzad
NASA Jet Propulsion Laboratory


Thursday, January 30th, 11 am, Elings 1605
​NASA’s trend toward less costly missions has created a need for smaller and more capable instruments for in situ planetary applications, space weather, and Earth Observations. The rise of cubesats has created a new powerful platform that if enabled with powerful sensing technology can be an instrument of discovery. At the same time, large aperture UV/visible/Near Infrared space telescope are being planned for cosmology and astrophysics studies that will need high performance yet affordable detectors to populate their very large focal plane arrays. In nearly all these facets of space exploration, there is a strong need for high signal to noise ultraviolet detection technology. This is due to the fact that the ultraviolet part of the spectrum is rich in spectral information that are key to study exo-solar planets, protoplanets, intergalactic medium, supernovae, electromagnetic counterpart of gravitational wave, star formation, galaxy evolution, and more. Semiconductor detectors offer a rich spectral range, tailorable spectral response, high resolution, and sensitivity; however, these capabilities are not available in a single material or class of material. For example, while silicon imagers have reached high performance levels in format, pixel size, and signal to noise, they are naturally insensitive to ultraviolet light. Using non-equilibrium processes, we can manipulate materials at nanometer scale, form unusual and quantum structures, and alter bandstructures. Through nanoscale surface and interface engineering of 2D doping (superlattice doping and delta doping) high performance silicon-based imagers are produced with record high quantum efficiency in the ultraviolet. Furthermore, the response of silicon imagers can be tailored for out of band rejection through nano-scale interface engineering. In this talk we will discuss the underlying physics of the ultraviolet silicon detectors, their performance, their integration in systems, and their application in cubesats and space flagship missions. We will also discuss the synergy between the requirements for instruments in NASA space applications and medical applications and show how space technologies can and have been used for medical applications.
Coffee provided!
Picture
Dr. Nikzad introduces here work at NASA on Si-based UV detectors applications on cubesats.

Quantum Photonics Using 2D Materials

4/21/2019

 
Picture

Picture


​Dr. Vinod Menon
Professor of Physics
City University of New York

Friday April 26th | 12:00 pm | Elings 1605
Two-dimensional Van der Waals materials have emerged as a very attractive class of optoelectronic material due to the unprecedented strength in its interaction with light. In this talk I will discuss approaches to realize quantum photonic devices by integrating these 2D materials with microcavities, and metamaterials. I will first discuss the formation of strongly coupled half-light half-matter quasiparticles (microcavity polaritons) and their optical and electrical control in the 2D transition metal dichacogenide (TMD) systems. Prospects of realizing condensation and few photon nonlinear switches using Rydberg states in TMDs will also be discussed. Following this, I will discuss the broadband enhancement of light-matter interaction in these 2D materials using photonic hypercrystals and chiral metasurfaces. Finally, I will talk about room temperature single photon emission from hexagonal boron nitride and the prospects of developing deterministic quantum emitters using them through strain engineering. The realization of room temperature single photon emitters and few photon
nonlinear switches using 2D materials presents an attractive direction for robust next generation quantum photonic technologies.
​
Refreshments Provided!
Picture
Dr. Menon describes the different categories of 2D materials and identifies Van der Waals materials

Coherent Ising machine: a photonic Ising model solver based on degenerate optical parametric oscillator network

1/15/2019

 
Picture
Picture

​
Dr. Hiroki Takesue
NTT Basic Research Laboratories
NTT Corporation
Friday, Jan 18, 12 – 1 pm, Elings 1605
As various systems and networks in our society grow larger and more complex, analysis and
optimization of such systems are becoming increasingly important. Such tasks are classified as combinatorial optimization problems, which are generally difficult to solve with current digital computers. It is well known that combinatorial optimization problems can be converted to ground-state-search problems of the Ising model, a theoretical model for the interacting spins. Recently, several approaches to find solutions to the Ising model using artificial spin systems have been studied intensively. A coherent Ising machine (CIM) is one of such systems in which degenerate optical parametric oscillators (DOPO) pulses are used as artificial spins. By using a long-distance (typically 1 km) fiber cavity that contains a phase sensitive amplifier based on a periodically poled lithium niobate waveguide, we can generate thousands of DOPO pulses multiplexed in time domain. Since a DOPO phase only takes either 0 or p at above threshold, we can stably express an Ising spin with a DOPO by allocating phase 0 (p) as spin up (down). The “spin-spin interaction” can be implemented by using a measurement-feedback scheme, with which we can effectively realize mutual injection of lights among thousands of DOPO pulses. The networked DOPOs are most likely to oscillate at a phase configuration that best stabilize the whole network, which gives the solution to the given Ising problem. Based on this scheme, we realized a CIM with all-to-all-coupled 2000 DOPO pulses, by which we could find good solutions to 2000-node combinatorial optimization problems in less than 100 microseconds. In the talk, I will describe the basic principle and the experimental details of the CIM, as well as our effort for finding its applications.
Refreshments Provided!

20 Years of Nanomaterials for Biophotonics: Challenges and Opportunities

11/10/2018

 
Picture
Picture
​​
​Dr. Ken-Tye Yong
Director of the Bio Devices and Signal Analysis (VALENS)
School of Electrical and Electronic Engineering
Nanyang Technological University (NTU)

Tuesday, Nov. 20th, 3 - 4 pm, ESB 2001
Nanomaterials have been applied in healthcare applications such as cancer imaging, lymph node mapping and brain diseases therapy. These nanomaterials can be engineered to serve as a platform for challenges in highly sensitive optical diagnostic tools, biosensors, and guided imaging and therapy. The versatility of nanomaterials may provide the keys to improve diagnostics and therapy of human diseases. In this talk, we will highlight the use of nanomaterials with different sizes, compositions, and shapes for nanomedicine applications. This talk is intended to promote the awareness of past and present developments of nanomaterials in biomedical fields, the potential toxicity of nanomaterials, and the approaches to engineer new types of safe nanomaterials, whereby encouraging researchers to think about exciting and promising biophotonic and nanomedicine applications with nanomaterials in the future.
Refreshments Provided!

III-V Semiconductor Unipolar Barrier Infrared Detectors

11/8/2018

 
Picture
Picture
​​
​Dr. David Ting
Jet Propulsion Laboratory
California Institute of Technology

Friday Nov 9th, 1pm, Elings 1605
​The past decade has seen accelerated progress in III-V semiconductor infrared photodetector technology. The advent of the unipolar barrier infrared detector device architecture has in many instances greatly alleviated generation-recombination (G-R) and surface-leakage dark current issues that had been problematic for many III-V photodiodes.   Meanwhile advances in a variety type-II superlattices (T2SLs) such as InGaAs/GaAsSb, InAs/GaSb, and InAs/InAsSb, as well as in bulk III-V material such as InGaAsSb and metamorphic InAsSb, have provided continuously adjustable detector cutoff wavelength coverage from the short wavelength infrared (SWIR) to the very long wavelength infrared (VLWIR).   The confluence of these developments has led to a new generation of versatile, cost-effective, high-performance infrared detectors and focal plane arrays based on robust III-V semiconductors, providing a viable alternative to HgCdTe (MCT).
Refreshments provided!​

Digital Resolution Detection of miRNA by Photonic Resonator Absorption Microscopy

10/11/2018

 
Picture
Picture

​​Prof.Brian Cunningham
Department of Electrical and Computer Engineering,
Department of Bioengineering
University of Illinois at Urbana-Champaign

Tuesday, Oct 16th, 11am, ESB 1001
Picture
​Circulating exosomal miRNA represents a potentially useful class of bloodborne biomarkers for cancer. We present the initial proof-of-concept of an approach in which gold nanoparticle tags are prepared with thermodynamically optimized nucleic acid toehold probes that displace a oligonucleotide and reveal a capture sequence that is used to selectively pull down the target-probe-nanoparticle complex to a photonic crystal (PC) biosensor surface. By matching the surface plasmon resonant wavelength of the nanoparticle tag to the resonant wavelength of the PC nanostructure, the reflected light intensity from the PC is dramatically and locally quenched by the presence of each nanoparticle. 

​
​ The talk described the optical operating principles of Photonic Resonator Absorption Microscopy (PRAM), the thermodynamic design of DNA toehold probes, and our first results demonstrating the detection limits, selectivity, and dynamic range of the assay.


Refreshments provided!
Picture
Dr. Cunningham giving his talk about Microscopy Enabled by Nanostructured Surfaces.

Photonic Integrated Devices and Systems: Technology for Next Generation Networks

6/4/2018

 
Picture
Picture


Dr. Ghanshyam Singh
Malaviya National Institute of Technology
Jaipur, India
Friday, Jun. 8th, 4:30 - 5:30 pm, ESB 2001
Communications networks and systems are seeing extreme increases in network traffic which is growing at the tremendous rate of 30% per year. It is estimated that the energy and cost requirements will increase tenfold in coming year. But this progress is not sustainable from an ecological and economic point of view. However, this information explosion can be dealt with, using the integration of very  small photonic components on very high density Photonic Integrated Circuits (PICs). The technolgoical advancements in PICs have made them a popular choice for components of next generation networks. Silicon being the evident choice due to its high availability, mature fabrication technology, and low cost has attracted components on a chip. At the same time, the unique, material properties and direct bandgap of group III-V materials have huge potential in applications like laser amplifiers, modulators, and detectors. Due to robustness, flexibility, reliability, and performance of PICs, many commercial solutions are now available for a variety of applications. 
Refreshments Provided!
Picture
Dr. Singh looking into the UCSB nanofab cleanroom during his visit.

    Mailing List

    Supported By

    Picture
    Thorlabs designs and produces a variety of optomechanical and optoelectronic components in 15 facilities around the globe. Thorlabs seeks to listen and serve its customers with over 20,000 products available. ​
    Picture
    Difficult STEM subjects explained by textbook solution videos taught by expert educators including Physics, Calculus, Chem, Bio, Econ, Math, Science and more!

    Archives

    January 2021
    December 2020
    October 2020
    August 2020
    May 2020
    April 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    June 2018
    February 2018
    January 2018
    October 2017
    July 2017
    June 2017
    March 2017
    February 2017
    October 2016
    September 2016
    July 2016
    April 2016
    February 2016
    January 2016
    October 2015
    September 2015
    August 2015
    July 2015
    May 2015
    January 2015
    October 2014
    September 2014
    July 2014
    May 2014
    April 2014
    March 2014
    September 2013
    July 2013
    March 2013
    February 2013
    October 2012

    Categories

    All
    Alumni Lectures
    Industry Perspective Lectures
    IPS Distinguished Lectures
    Lectures
    OSA Lectures
    Outreach Events
    Past Events
    Social Events
    Student Lecture Series

Powered by Create your own unique website with customizable templates.