Friday April 26th | 12:00 pm | Elings 1605 Two-dimensional Van der Waals materials have emerged as a very attractive class of optoelectronic material due to the unprecedented strength in its interaction with light. In this talk I will discuss approaches to realize quantum photonic devices by integrating these 2D materials with microcavities, and metamaterials. I will first discuss the formation of strongly coupled half-light half-matter quasiparticles (microcavity polaritons) and their optical and electrical control in the 2D transition metal dichacogenide (TMD) systems. Prospects of realizing condensation and few photon nonlinear switches using Rydberg states in TMDs will also be discussed. Following this, I will discuss the broadband enhancement of light-matter interaction in these 2D materials using photonic hypercrystals and chiral metasurfaces. Finally, I will talk about room temperature single photon emission from hexagonal boron nitride and the prospects of developing deterministic quantum emitters using them through strain engineering. The realization of room temperature single photon emitters and few photon nonlinear switches using 2D materials presents an attractive direction for robust next generation quantum photonic technologies. Refreshments Provided!
Comments are closed.
|
Mailing ListSupported ByThorlabs designs and produces a variety of optomechanical and optoelectronic components in 15 facilities around the globe. Thorlabs seeks to listen and serve its customers with over 20,000 products available.
![]() Founded in 2018, Nexus Photonics has developed integrated photonics ready to scale. Smaller, lighter and faster, their platform outperforms industry benchmarks, and operates in an ultra-broadband wavelength range from ultraviolet to infrared to support a wide breadth of practical applications.
Archives
October 2024
Categories
All
|