Friday November 4th at 1:00 pm in ESB 2001 Coherent optical technologies enable high-bandwidth communication across the globe and are fundamental to the fiber optic backbone of the internet. Due to exponential increase in demand for bandwidth, and the subsequent rise of hyperscale data centers, coherent systems are now being used for shorter links, such as between data centers, or even inside of them. In this talk, I will first briefly review trends and the evolution of coherent optical modems, highlighting Ciena’s technology and contributions. I will discuss various challenges and solutions for next-generation coherent modems used in traditional medium-haul and long-haul links. In the second part of the talk, I will discuss the transition of coherent technologies to inter- and intra-data center optical links, focusing on data center switching bottlenecks, such as frontplate density, rack power consumption, and PIC shoreline density. I’ll then briefly review the use of optical frequency combs as a potential enabling technology for future data center links. In the final part of the talk, I’ll shift gears to professional development and give a brief overview of my experience with the Stanford Optical Society, balancing priorities during grad school, and the transition to industry. Brandon Buscaino received a Ph.D. in Electrical Engineering from Stanford University in 2020 as a member of Prof. Joseph M. Kahn’s Optical Communications Group. While there, he developed novel techniques for electro-optic frequency comb generation and designed coherent optical links for next-generation co-packaged data center communications using external and integrated light sources. As president of the Stanford Optical Society, the graduate student Optica chapter, he organized community conferences, led outreach presentations at FiO+LS, and served on the Optica Student Leadership Conference planning committee. Since then, he has continued professional involvement in optics by participating in various Optica technical groups and committees as well as several Congressional Visits Days, advocating for optics and photonics funding in Congress. Since 2020, Brandon has worked predominantly with coherent optical communications technologies, such as digital coherent optical systems up to 800 Gb/s per wavelength and point-to-multipoint coherent pluggables. Currently, he is a Research Scientist at Ciena Corporation, focusing on novel applications of next-generation coherent optical communications systems and subsystems. Brandon has co-authored over a dozen journal and conference papers as well as several patents and is an active reviewer for J. of Lightwave Tech., Chin. Optics Lett., and J. on Sel. Topics in Quantum Electron. In 2021, Brandon was awarded the Kaminow Outstanding Early Career Professional Prize from Optica. In 2022, Brandon was selected to be a part of the 2022 Optica Ambassador class.
GDSfactory is a design automation tool for photonics and analog circuits. You can describe your circuits with a code driven flow (python or YAML), verify them (DRC, simulation) and analyze them. Multiple Silicon Photonics foundries have gdsfactory PDKs available. In this tutorial on GDSfactory, you will learn: ●Define parametric cells (PCells) in python or YAML ●Define routes between components ●Test component settings, ports and geometry to avoid regressions |
Mailing ListSupported ByThorlabs designs and produces a variety of optomechanical and optoelectronic components in 15 facilities around the globe. Thorlabs seeks to listen and serve its customers with over 20,000 products available.
Founded in 2018, Nexus Photonics has developed integrated photonics ready to scale. Smaller, lighter and faster, their platform outperforms industry benchmarks, and operates in an ultra-broadband wavelength range from ultraviolet to infrared to support a wide breadth of practical applications.
Archives
October 2024
Categories
All
|