Friday November 4th at 1:00 pm in ESB 2001 Coherent optical technologies enable high-bandwidth communication across the globe and are fundamental to the fiber optic backbone of the internet. Due to exponential increase in demand for bandwidth, and the subsequent rise of hyperscale data centers, coherent systems are now being used for shorter links, such as between data centers, or even inside of them. In this talk, I will first briefly review trends and the evolution of coherent optical modems, highlighting Ciena’s technology and contributions. I will discuss various challenges and solutions for next-generation coherent modems used in traditional medium-haul and long-haul links. In the second part of the talk, I will discuss the transition of coherent technologies to inter- and intra-data center optical links, focusing on data center switching bottlenecks, such as frontplate density, rack power consumption, and PIC shoreline density. I’ll then briefly review the use of optical frequency combs as a potential enabling technology for future data center links. In the final part of the talk, I’ll shift gears to professional development and give a brief overview of my experience with the Stanford Optical Society, balancing priorities during grad school, and the transition to industry. Brandon Buscaino received a Ph.D. in Electrical Engineering from Stanford University in 2020 as a member of Prof. Joseph M. Kahn’s Optical Communications Group. While there, he developed novel techniques for electro-optic frequency comb generation and designed coherent optical links for next-generation co-packaged data center communications using external and integrated light sources. As president of the Stanford Optical Society, the graduate student Optica chapter, he organized community conferences, led outreach presentations at FiO+LS, and served on the Optica Student Leadership Conference planning committee. Since then, he has continued professional involvement in optics by participating in various Optica technical groups and committees as well as several Congressional Visits Days, advocating for optics and photonics funding in Congress. Since 2020, Brandon has worked predominantly with coherent optical communications technologies, such as digital coherent optical systems up to 800 Gb/s per wavelength and point-to-multipoint coherent pluggables. Currently, he is a Research Scientist at Ciena Corporation, focusing on novel applications of next-generation coherent optical communications systems and subsystems. Brandon has co-authored over a dozen journal and conference papers as well as several patents and is an active reviewer for J. of Lightwave Tech., Chin. Optics Lett., and J. on Sel. Topics in Quantum Electron. In 2021, Brandon was awarded the Kaminow Outstanding Early Career Professional Prize from Optica. In 2022, Brandon was selected to be a part of the 2022 Optica Ambassador class.
Dr. Julia Majors - Master Oscillator Packaging for the Laser Interferometer Space Antenna (LISA)7/8/2021
Thursday, July 15, 10:00 - 11:00 am (PDT) 5 years after the earth-based gravitational wave observatory, LIGO, made its first detection of gravitational waves, work is already well underway in preparing for the next generation of gravitational wave observatories – in orbit around the sun. Working with NASA Goddard Space Flight Center, we are building what will be the “quietest” oscillator in (and above) the world to serve as the core light source for the interferometric system. The system is based on a non-planar ring oscillator (NPRO) model, which I will discuss along with some of the challenges that arise when developing laser systems for space applications.
Friday, October 23rd, 11 am (PDT) via Zoom Dr. Christian Reimer is a physicist and entrepreneur working in the fields of nonlinear optics, integrated photonics and quantum optics. He received graduate degrees from the Karlsruhe Institute of Technology in Germany, Heriot-Watt University in Scotland, and the National Institute of Scientific Research in Canada. He then worked as a postdoctoral fellow at Harvard University, before becoming Co-Founder and Head of Product of HyperLight Corporation. HyperLight, a Venture-Capital funded start-up out of Harvard University, is specialized on integrated lithium niobate technologies for ultra-high performance photonic solutions. In the scientific part of his talk, Christian will introduce the field of integrated photonics based on thin-film lithium niobate, with a focus on electro-optic applications, as well as recent progress on transforming the field from chip-based proof-of-concept realizations for wafer-scale production. In the professional development section, he will then share his experience transitioning from academia to a start-up company. He will talk about differences and similarities in the work environment, what to expect in terms of tasks and responsibilities, and explain how salaries at start-ups can include combinations of equity and incentives. Images from hyperlightcorp.com Wednesday, May 20, 2020, 1 p.m. Sustainability applied to networking is about treating professional support and assistance like a resource, and creating more of it than you take. Dr. Willis will discuss principles and applications of sustainable professional networking, and how to use it to generate success through mutually beneficial professional relationships. She will also discuss her own career path, citing examples that illustrate the value of sustainable networking.
Thurs. Nov 14, 2019 | 12:00 - 1:00 pm | ESB 2001 Photonic technologies are at the forefront of the ongoing 4th industrial revolution of digitalization supporting applications such as virtual reality, autonomous vehicles, and electronic warfare. The development of integrated photonics in recent years enabled functional devices and circuits through miniaturization. However, fundamental challenges such as the weak light-matter integration can limited silicon and III-Vbased devices to millimeter-scale footprints demanding about one million photons-per-bit. Overcoming these challenges, in the first part of this talk I will show how nanoscale photonics together with heterogeneous integration of emerging materials into foundry-based photonic chips enables strong nonlinearity, which we use to demonstrate attojoule and compact optoelectronics. Here I will discuss our recent devices demonstrating ITO-based MZI modulators, 2D-material excitonic photodetectors, and exotic epsilon-near-zero modes empowering record-efficient phase shifters for applications in data-comm, LiDAR, and photonic neural networks (NN). Further, I will show that the usually parasitic Kramers-Kronig relations of altering the optical index can be synergistically exploited delivering new modulator operations. With Moore’s law and Dennard scaling now being limited by fundamental physics, the trend in processor heterogeneity suggests the possibility for special-purpose photonic processors such as NNs or RF-signal & image filtering. Here unique opportunities exist, for example, given by algorithmic parallelism of analog computing enabling non-iterative O(1) processors, thus opening prospects for distributed nonvan Neumann architectures. In the second part of this talk, I will share our latest work on analog photonic processors to include a) a feed-forward fully-connected NN, b) mirror symmetry perception via coincidence detection of spiking NNs, c) a Fourier-optics based convolutional processor with 1 PMAC/s throughputs at nanosecond-short delays for real-time processing, d) a photonic residue arithmetic adder, and e) meshbased reconfigurable photonic & metatronic PDE solvers. In summary, heterogeneous photonics connects the worlds of electronics and optics, thus enabling new classes of efficient optoelectronics and analog processors by employing the distinctive properties of light. Pizza will be provided!
Friday, Feb 8, 1 – 2 pm, ESB 1001 More than a billion individual VCSELs were deployed before 2017 as optical sources within short-reach optical interconnects as well as for position sensing. In 2018, laser manufacturing began the era of 2D VCSEL arrays. As a result more than a billion new VCSELs were added in a single year to provide new functionality for consumer electronics products. In this talk I will report on the development of coherently coupled VCSEL arrays which may enable new VCSEL applications. I will discuss the physics of operation for antiguided photonic crystal VCSEL arrays, and will show their potential application for electronic beam steering and high speed digital data transmission. Refreshments Provided!
|
Mailing ListSupported ByThorlabs designs and produces a variety of optomechanical and optoelectronic components in 15 facilities around the globe. Thorlabs seeks to listen and serve its customers with over 20,000 products available.
Founded in 2018, Nexus Photonics has developed integrated photonics ready to scale. Smaller, lighter and faster, their platform outperforms industry benchmarks, and operates in an ultra-broadband wavelength range from ultraviolet to infrared to support a wide breadth of practical applications.
Archives
May 2024
Categories
All
|