Friday July 21st, 1:00pm in Henley Hall 1010 In recent years, the monolithic integration of III/V-semiconductor materials and heterostructures on CMOS-compatible (001) Si-substrate is gaining increasing interest for the realization of novel integrated circuits with improved electronic, optoelectronic or photonic functionalities. The principal challenges of the III/V-material integration on CMOS-compatible (001) Si-substrates will be reviewed and possible solutions for the high-quality deposition of III/V-layer stacks will be demonstrated for large area 300 mm (001) Si-wafers by applying low-temperature metal organic vapour phase epitaxy (MOVPE) processes. Examples of successfully developed technologies including defect-free GaP-on-Si-template wafers as well as novel lattice-matched Ga(NAsP)-based laser stacks for Si-photonics applications will be presented and discussed. Wolfgang Stolz is full professor and co-head of the Structure and Technology Research Laboratory (Material Sciences Center and Faculty of Physics, Philipps-University Marburg (Germany)), Adjunct Professor at the Optical Sciences Center (University of Arizona, Tucson (USA)) and Chief Technology Officer (CTO NAsP III/V GmbH, Marburg (Germany)). His current fields of activities include the epitaxial growth for a wide range of III/V-compound semiconductor material systems and heterostructures by applying metal organic vapour phase epitaxy (MOVPE) as well as realization of novel device concepts for electronic, solar cell and laser applications in particular also monolithically integrated on CMOS-compatible (001) Si-substrates. |
Mailing ListSupported ByThorlabs designs and produces a variety of optomechanical and optoelectronic components in 15 facilities around the globe. Thorlabs seeks to listen and serve its customers with over 20,000 products available.
Founded in 2018, Nexus Photonics has developed integrated photonics ready to scale. Smaller, lighter and faster, their platform outperforms industry benchmarks, and operates in an ultra-broadband wavelength range from ultraviolet to infrared to support a wide breadth of practical applications.
Archives
October 2024
Categories
All
|