Friday March 24th, 12:00 pm in Henley Hall 1010 New machine learning algorithms such as deep neural networks and the availability of large datasets have created a large drive towards new types of hardware capable of executing these algorithms with higher energy-efficiency. Recently, silicon photonics has emerged as a promising hardware platform for neuromorphic computing due to its inherent capability to process linear and non-linear operations and transmit a high bandwidth of data in parallel. At Hewlett Packard Labs, an energy-efficient dense-wavelength division multiplexing (DWDM) silicon photonics platform has been developed as the underlying foundation for innovative neuromorphic computing architectures. The latest research on our silicon photonic neuromorphic platform will be presented and discussed. Biography:
Bassem Tossoun received his PhD in Electrical Engineering at the University of Virginia in 2019 with his research interests including silicon photonics and the design, fabrication, and characterization of optoelectronic devices for data communications. Currently, he is a Senior Research Scientist at Hewlett Packard Labs working on heterogeneously integrated III-V on silicon photonic devices for next-generation optical computing and communications. On March 18th, the Photonics society held its 5th Women in Photonics event! The day kicked off with a plenary talk from Michelle O'Toole, an engineer at Johns Hopkins Applied Physics Laboratory. Then, the 20 high school participants went on a series of lab and cleanroom tours hosted by UCSB Photonics Society members, and in the afternoon had hands-on photonics labs.Friday, Mar 3rd, 1:00 pm (PST) in-person in Henley 1010 Abstract: The insatiable growth of datacenter traffic mandates increasing the capacity of cost-effective transceiver technologies to meet the foreseen demand. Competing configurations include IM/DD and coherent transceiver architectures. In this presentation we will discuss the challenges and opportunities associated with these two options including such topics as: wavelength, reach modulation format, modulator technology, and power consumption.
Bio: David V. Plant has been a Professor in the Department of Electrical and Computer Engineering at McGill University, Montreal, Canada, since 1993 where he currently holds a Tier I Canada Research Chair in Optical Fiber Communications Systems. He received his Ph.D. from Brown University, and he was at UCLA as a Post-Doc before joining McGill University. He was a Killam Research Fellow and Received the IEEE Photonics Society Engineering Achievement Award. He is a fellow of Optica, EIC, CAE, IEEE, and the RSC. |
Mailing ListSupported ByThorlabs designs and produces a variety of optomechanical and optoelectronic components in 15 facilities around the globe. Thorlabs seeks to listen and serve its customers with over 20,000 products available.
Founded in 2018, Nexus Photonics has developed integrated photonics ready to scale. Smaller, lighter and faster, their platform outperforms industry benchmarks, and operates in an ultra-broadband wavelength range from ultraviolet to infrared to support a wide breadth of practical applications.
Archives
May 2024
Categories
All
|