Tuesday, October 29th 12-1 PM, Henley Hall 1010
Tucker's Grove Picnic Area 2 Thanks to everyone who came out for our annual Photonics BBQ! The evening was a great success with over 75 students, industry representatives, and families enjoying some delicious SB Chicken Ranch catering! The Photonics Society held its biannual banquet on Wednesday, May 22nd, 2024 in the Loma Pelona Center. It was a night of fruitful discussions, networking, and good food for all who attended! Thank you to our sponsors Thorlabs and Nexus Photonics for making this event possible!
The Photonics Society partnered with the Quantum Foundry to host the 2024 Quantum Industry Showcase on April 25-26th! The Quantum Industry Showcase aims to connect Quantum Foundry and Photonics Society industry partners to the graduate students and postdocs working in quantum materials and technologies, fostering networking, discussion, mentoring, and recruitment in service of the NSF Quantum Foundry's mission to develop a next-generation Quantum Workforce.
The event was a great success with over 15 companies in attendance, and presentations from Infleqtion, Google Quantum AI, Freedom Photonics, IonQ, Bluefors, and Nexus Photonics. Lasers and Interferometers from Fiber and Mice to Black Holes: Dr. Doug Baney, Keysight Technologies4/19/2024
We were honored to host the Thorlabs Mobile Photonics Lab on their inaugural cross-country tour from Newton, NJ to San Francisco, CA. The Mobile Lab provided students with the opportunity to experience hands-on photonics demos including biomedical optics and imaging, spectroscopy, and optical communications.On October 6th, students, professors, research staff, and industry professionals gathered at Goleta Beach Area D to catch up, talk about photonics, and make new connections while enjoying excellent food catered by SB Chicken Ranch. There was good conversation with industry members from Thorlabs Crystalline Solutions, Nexus Photonics, Freedom Photonics, Quintessent, HPE, Praevium, and Kyocera SLD. Newer students got a chance to interact with current grad students and network with industry representatives. The event was a great success, with over 100 attendees. Friday, August 11th at 1:00pm in Henley Hall Semiconductor nanostructures with low dimensionality like quantum dots are one the best attractive solutions for achieving high performance photonic devices. When one or more spatial dimensions of the nanocrystal approach the de Broglie wavelength, nanoscale size effects create a spatial quantization of carriers. When directly grown on silicon, they even show a four-wave mixing efficiency much superior compared to the conventional quantum well devices. This remarkable result paves the way for achieving high-efficiency frequency comb generation from a photonic chip. Quantum dot lasers are a good candidate for applications in optical routing and optical atomic clock and quantum information processing. This lecture will review the recent findings and prospects on nanostructure based light emitters made with quantum-dot technology and their applications. Frédéric Grillot is currently a Full Professor at Télécom Paris (France) and a Research Professor at the University of New-Mexico (USA). His research interests include, but are not limited to, advanced quantum confined devices using III-V compound semiconductors, quantum dots quantum dashes, light-emitters based on intersubband transitions, non-classical light, nonlinear dynamics and optical chaos in semiconductor lasers systems as well as microwave and silicon photonics applications.
Professor Grillot has made outstanding technical contributions in photonics and optical communications. He has intensively contributed to the development of quantum dot devices enabling their utilization as future active devices with superior performance. In particular, his recent achievements on epitaxial quantum dot lasers on silicon are crucial for the development of isolation-free integrated technologies. Among his major achievements, he also reported the first private optical communication using mid-infrared chaotic light, giant pulses emission in quantum cascade devices as well as multigigabits operation in the thermal atmospheric window with unipolar quantum optoelectronics. Overall, his research is a strong input to the advancement of science and to the emerging practical applications in computer and quantum technologies, as well as in more traditional areas such as optical communications. Professor Grillot strongly contributes to promote and support the development of the general optics community. He has served diligently and successfully Optica in particular as an Associate Editor of Optics Express, now as a Deputy Editor since September 2022. As of now, he has published more than 130 journal articles, 3 book chapters, and delivered many invited talks in major international conferences and workshops. Frédéric Grillot is also a Fellow Member of the SPIE as well as a Senior Member of Optica and the IEEE Photonics Society. In 2022, he received the IEEE Photonics Society Distinguished Lecturer Award which honors excellent speakers who have made technical, industrial or entrepreneurial contributions to the field of photonics.
Friday July 21st, 1:00pm in Henley Hall 1010 In recent years, the monolithic integration of III/V-semiconductor materials and heterostructures on CMOS-compatible (001) Si-substrate is gaining increasing interest for the realization of novel integrated circuits with improved electronic, optoelectronic or photonic functionalities. The principal challenges of the III/V-material integration on CMOS-compatible (001) Si-substrates will be reviewed and possible solutions for the high-quality deposition of III/V-layer stacks will be demonstrated for large area 300 mm (001) Si-wafers by applying low-temperature metal organic vapour phase epitaxy (MOVPE) processes. Examples of successfully developed technologies including defect-free GaP-on-Si-template wafers as well as novel lattice-matched Ga(NAsP)-based laser stacks for Si-photonics applications will be presented and discussed. Wolfgang Stolz is full professor and co-head of the Structure and Technology Research Laboratory (Material Sciences Center and Faculty of Physics, Philipps-University Marburg (Germany)), Adjunct Professor at the Optical Sciences Center (University of Arizona, Tucson (USA)) and Chief Technology Officer (CTO NAsP III/V GmbH, Marburg (Germany)). His current fields of activities include the epitaxial growth for a wide range of III/V-compound semiconductor material systems and heterostructures by applying metal organic vapour phase epitaxy (MOVPE) as well as realization of novel device concepts for electronic, solar cell and laser applications in particular also monolithically integrated on CMOS-compatible (001) Si-substrates.
One day one, the keynote speaker, Monica Hansen from Google, delivered a engaging presentation on "Building a Useful Quantum Computer," shedding light on the challenges and breakthroughs in quantum computing. Following the keynote, attendees had the opportunity to attend a series of presentations from companies working in quantum. Tin Komljenovic from Nexus Photonics presented on "Heterogeneous Photonics for Quantum," exploring the use of photonics in quantum technologies. Das Pemmaraju from IBM discussed their advancements in "Moving Towards Practical Quantum Advantage with Scalable Quantum Computing." Garrett Cole from Thorlabs Crystalline Solutions introduced "Semiconductor Supermirrors for Quantum Optical Metrology," presenting the potential of supermirrors in quantum applications. After lunch, the event resumed with more engaging presentations. Kate Raach from HRL shared insights on "Encoded Silicon Qubits: A High-Performance & Scalable Platform for Quantum Computing." Makan Mohageg from NASA JPL discussed "Space-Based Quantum Technologies at JPL," unveiling their research endeavors in quantum-related projects. The company led sessions ended with a career panel, providing a platform for students to gain valuable industry insights from the panelists. The panel discussion shed light on career opportunities, challenges, and future prospects in the dynamic field of quantum information science. The day concluded with the student poster session where students were able to showcase their work and discuss with industry members and other attendees. Day 2 provided students with the opportunity to talk 1:1 to specific representatives during office hours and to visit the facilities of 3 local companies. Asylum/Oxford Instruments, Google, and Thorlabs Crystalline Solutions opened their doors offering valuable insights into their quantum research and development initiatives. Acknowledgments and Sponsorship: The 2023 QIS event was made possible through the generous support of sponsor organizations, including HRL Laboratories, Nexus Photonics, Oxford Instruments, and Thorlabs Crystalline Solutions. Their contributions played a vital role in creating a platform for knowledge sharing, collaboration, and innovation within the quantum information science community. For more information see - https://2023-qis.quantumfoundry.ucsb.edu/ Friday March 24th, 12:00 pm in Henley Hall 1010 New machine learning algorithms such as deep neural networks and the availability of large datasets have created a large drive towards new types of hardware capable of executing these algorithms with higher energy-efficiency. Recently, silicon photonics has emerged as a promising hardware platform for neuromorphic computing due to its inherent capability to process linear and non-linear operations and transmit a high bandwidth of data in parallel. At Hewlett Packard Labs, an energy-efficient dense-wavelength division multiplexing (DWDM) silicon photonics platform has been developed as the underlying foundation for innovative neuromorphic computing architectures. The latest research on our silicon photonic neuromorphic platform will be presented and discussed. Biography:
Bassem Tossoun received his PhD in Electrical Engineering at the University of Virginia in 2019 with his research interests including silicon photonics and the design, fabrication, and characterization of optoelectronic devices for data communications. Currently, he is a Senior Research Scientist at Hewlett Packard Labs working on heterogeneously integrated III-V on silicon photonic devices for next-generation optical computing and communications. |
Mailing ListSupported ByThorlabs designs and produces a variety of optomechanical and optoelectronic components in 15 facilities around the globe. Thorlabs seeks to listen and serve its customers with over 20,000 products available.
Founded in 2018, Nexus Photonics has developed integrated photonics ready to scale. Smaller, lighter and faster, their platform outperforms industry benchmarks, and operates in an ultra-broadband wavelength range from ultraviolet to infrared to support a wide breadth of practical applications.
Archives
October 2024
Categories
All
|