The Photonics Society held its biannual banquet on Wednesday, May 22nd, 2024 in the Loma Pelona Center. It was a night of fruitful discussions, networking, and good food for all who attended! Thank you to our sponsors Thorlabs and Nexus Photonics for making this event possible!
The Photonics Society partnered with the Quantum Foundry to host the 2024 Quantum Industry Showcase on April 25-26th! The Quantum Industry Showcase aims to connect Quantum Foundry and Photonics Society industry partners to the graduate students and postdocs working in quantum materials and technologies, fostering networking, discussion, mentoring, and recruitment in service of the NSF Quantum Foundry's mission to develop a next-generation Quantum Workforce.
The event was a great success with over 15 companies in attendance, and presentations from Infleqtion, Google Quantum AI, Freedom Photonics, IonQ, Bluefors, and Nexus Photonics. Lasers and Interferometers from Fiber and Mice to Black Holes: Dr. Doug Baney, Keysight Technologies4/19/2024
We were honored to host the Thorlabs Mobile Photonics Lab on their inaugural cross-country tour from Newton, NJ to San Francisco, CA. The Mobile Lab provided students with the opportunity to experience hands-on photonics demos including biomedical optics and imaging, spectroscopy, and optical communications.On October 6th, students, professors, research staff, and industry professionals gathered at Goleta Beach Area D to catch up, talk about photonics, and make new connections while enjoying excellent food catered by SB Chicken Ranch. There was good conversation with industry members from Thorlabs Crystalline Solutions, Nexus Photonics, Freedom Photonics, Quintessent, HPE, Praevium, and Kyocera SLD. Newer students got a chance to interact with current grad students and network with industry representatives. The event was a great success, with over 100 attendees. Friday, August 11th at 1:00pm in Henley Hall Semiconductor nanostructures with low dimensionality like quantum dots are one the best attractive solutions for achieving high performance photonic devices. When one or more spatial dimensions of the nanocrystal approach the de Broglie wavelength, nanoscale size effects create a spatial quantization of carriers. When directly grown on silicon, they even show a four-wave mixing efficiency much superior compared to the conventional quantum well devices. This remarkable result paves the way for achieving high-efficiency frequency comb generation from a photonic chip. Quantum dot lasers are a good candidate for applications in optical routing and optical atomic clock and quantum information processing. This lecture will review the recent findings and prospects on nanostructure based light emitters made with quantum-dot technology and their applications. Frédéric Grillot is currently a Full Professor at Télécom Paris (France) and a Research Professor at the University of New-Mexico (USA). His research interests include, but are not limited to, advanced quantum confined devices using III-V compound semiconductors, quantum dots quantum dashes, light-emitters based on intersubband transitions, non-classical light, nonlinear dynamics and optical chaos in semiconductor lasers systems as well as microwave and silicon photonics applications.
Professor Grillot has made outstanding technical contributions in photonics and optical communications. He has intensively contributed to the development of quantum dot devices enabling their utilization as future active devices with superior performance. In particular, his recent achievements on epitaxial quantum dot lasers on silicon are crucial for the development of isolation-free integrated technologies. Among his major achievements, he also reported the first private optical communication using mid-infrared chaotic light, giant pulses emission in quantum cascade devices as well as multigigabits operation in the thermal atmospheric window with unipolar quantum optoelectronics. Overall, his research is a strong input to the advancement of science and to the emerging practical applications in computer and quantum technologies, as well as in more traditional areas such as optical communications. Professor Grillot strongly contributes to promote and support the development of the general optics community. He has served diligently and successfully Optica in particular as an Associate Editor of Optics Express, now as a Deputy Editor since September 2022. As of now, he has published more than 130 journal articles, 3 book chapters, and delivered many invited talks in major international conferences and workshops. Frédéric Grillot is also a Fellow Member of the SPIE as well as a Senior Member of Optica and the IEEE Photonics Society. In 2022, he received the IEEE Photonics Society Distinguished Lecturer Award which honors excellent speakers who have made technical, industrial or entrepreneurial contributions to the field of photonics.
Friday July 21st, 1:00pm in Henley Hall 1010 In recent years, the monolithic integration of III/V-semiconductor materials and heterostructures on CMOS-compatible (001) Si-substrate is gaining increasing interest for the realization of novel integrated circuits with improved electronic, optoelectronic or photonic functionalities. The principal challenges of the III/V-material integration on CMOS-compatible (001) Si-substrates will be reviewed and possible solutions for the high-quality deposition of III/V-layer stacks will be demonstrated for large area 300 mm (001) Si-wafers by applying low-temperature metal organic vapour phase epitaxy (MOVPE) processes. Examples of successfully developed technologies including defect-free GaP-on-Si-template wafers as well as novel lattice-matched Ga(NAsP)-based laser stacks for Si-photonics applications will be presented and discussed. Wolfgang Stolz is full professor and co-head of the Structure and Technology Research Laboratory (Material Sciences Center and Faculty of Physics, Philipps-University Marburg (Germany)), Adjunct Professor at the Optical Sciences Center (University of Arizona, Tucson (USA)) and Chief Technology Officer (CTO NAsP III/V GmbH, Marburg (Germany)). His current fields of activities include the epitaxial growth for a wide range of III/V-compound semiconductor material systems and heterostructures by applying metal organic vapour phase epitaxy (MOVPE) as well as realization of novel device concepts for electronic, solar cell and laser applications in particular also monolithically integrated on CMOS-compatible (001) Si-substrates.
One day one, the keynote speaker, Monica Hansen from Google, delivered a engaging presentation on "Building a Useful Quantum Computer," shedding light on the challenges and breakthroughs in quantum computing. Following the keynote, attendees had the opportunity to attend a series of presentations from companies working in quantum. Tin Komljenovic from Nexus Photonics presented on "Heterogeneous Photonics for Quantum," exploring the use of photonics in quantum technologies. Das Pemmaraju from IBM discussed their advancements in "Moving Towards Practical Quantum Advantage with Scalable Quantum Computing." Garrett Cole from Thorlabs Crystalline Solutions introduced "Semiconductor Supermirrors for Quantum Optical Metrology," presenting the potential of supermirrors in quantum applications. After lunch, the event resumed with more engaging presentations. Kate Raach from HRL shared insights on "Encoded Silicon Qubits: A High-Performance & Scalable Platform for Quantum Computing." Makan Mohageg from NASA JPL discussed "Space-Based Quantum Technologies at JPL," unveiling their research endeavors in quantum-related projects. The company led sessions ended with a career panel, providing a platform for students to gain valuable industry insights from the panelists. The panel discussion shed light on career opportunities, challenges, and future prospects in the dynamic field of quantum information science. The day concluded with the student poster session where students were able to showcase their work and discuss with industry members and other attendees. Day 2 provided students with the opportunity to talk 1:1 to specific representatives during office hours and to visit the facilities of 3 local companies. Asylum/Oxford Instruments, Google, and Thorlabs Crystalline Solutions opened their doors offering valuable insights into their quantum research and development initiatives. Acknowledgments and Sponsorship: The 2023 QIS event was made possible through the generous support of sponsor organizations, including HRL Laboratories, Nexus Photonics, Oxford Instruments, and Thorlabs Crystalline Solutions. Their contributions played a vital role in creating a platform for knowledge sharing, collaboration, and innovation within the quantum information science community. For more information see - https://2023-qis.quantumfoundry.ucsb.edu/ Friday March 24th, 12:00 pm in Henley Hall 1010 New machine learning algorithms such as deep neural networks and the availability of large datasets have created a large drive towards new types of hardware capable of executing these algorithms with higher energy-efficiency. Recently, silicon photonics has emerged as a promising hardware platform for neuromorphic computing due to its inherent capability to process linear and non-linear operations and transmit a high bandwidth of data in parallel. At Hewlett Packard Labs, an energy-efficient dense-wavelength division multiplexing (DWDM) silicon photonics platform has been developed as the underlying foundation for innovative neuromorphic computing architectures. The latest research on our silicon photonic neuromorphic platform will be presented and discussed. Biography:
Bassem Tossoun received his PhD in Electrical Engineering at the University of Virginia in 2019 with his research interests including silicon photonics and the design, fabrication, and characterization of optoelectronic devices for data communications. Currently, he is a Senior Research Scientist at Hewlett Packard Labs working on heterogeneously integrated III-V on silicon photonic devices for next-generation optical computing and communications. On March 18th, the Photonics society held its 5th Women in Photonics event! The day kicked off with a plenary talk from Michelle O'Toole, an engineer at Johns Hopkins Applied Physics Laboratory. Then, the 20 high school participants went on a series of lab and cleanroom tours hosted by UCSB Photonics Society members, and in the afternoon had hands-on photonics labs.Friday, Mar 3rd, 1:00 pm (PST) in-person in Henley 1010 Abstract: The insatiable growth of datacenter traffic mandates increasing the capacity of cost-effective transceiver technologies to meet the foreseen demand. Competing configurations include IM/DD and coherent transceiver architectures. In this presentation we will discuss the challenges and opportunities associated with these two options including such topics as: wavelength, reach modulation format, modulator technology, and power consumption.
Bio: David V. Plant has been a Professor in the Department of Electrical and Computer Engineering at McGill University, Montreal, Canada, since 1993 where he currently holds a Tier I Canada Research Chair in Optical Fiber Communications Systems. He received his Ph.D. from Brown University, and he was at UCLA as a Post-Doc before joining McGill University. He was a Killam Research Fellow and Received the IEEE Photonics Society Engineering Achievement Award. He is a fellow of Optica, EIC, CAE, IEEE, and the RSC.
February 23, 2023 at 9:00 am in Henley Hall 1010 and on Zoom Nanophotonics modelling for 21st century applications is becoming vital. The computational modeling provides a fundamental understanding of the relying physics behind the operation of photonic devices. However, computational modeling is still a challenge as some of the existing modeling techniques fail to capture the correct behavior of nano-photonic devices. In this regard, this talk will introduce an overview of the existing computational modeling tools for analyzing photonic devices, in general, and highlighting their salient features and shortcomings. It is well known that “plasmonics” plays a vital role now in localising the optical field beyond the diffraction limit and hence in integrated optics. Therefore, the talk will focus on plasmonics modeling issues and the failure of the classical electromagnetic solvers to accurately characterize the nano-plasmonic devices. Therefore, new accurate and stable beam propagation method will be introduced for analyzing plasmonics in the classical regime. The rigor of this approach is mainly because of relying on the finite elements method and the twice faster Blocked Schur algorithm which can exactly represent all the wide spectrum of radiation, evanescent, and surface modes produced by the strong discontinuity between metal and its surroundings. Moreover, in merging quantum plasmonic devices, it becomes essential to introduce “Quantum Corrected Model (QCM)” in order to accurately model these devices, and the basics of QCM will be also discussed. Dr. Salah Obayya Biography: Salah S A Obayya joined Zewail City of Science and Technology (ZC) in 2012 where he is now Chair Professor and Founding Director of Center for Photonics and Smart Materials (CPSM). He occupied the positions of the Vice Chairman of ZC and Director-General of Research Institutes at the same institution. Prior to Zewail City, he took up several academic posts at Brunel University UK (tenured Associate Professor, 2002), University of Leeds, UK (tenured Professor, 2006) and University of South Wales, UK (tenured Chair Professor, 2008) where he was the Founding Director of Photonics and Broadband Communications (PBC) Research Center and also he was the Director of Postgraduate Programs at the same institution. In May 2006, he has been naturalized as “British” citizen.
He has established an outstanding international reputation in the area of green nanophotonics with focus on the intelligent computational modeling of modern nano-photonic devices enabling technologies needed to realise low-carbon green society. He has published 271 journal publications, mostly in OSA, IEEE and IET/IEE, authored 3 books (Computational Photonics, Wiley 2010 and Computational Liquid Crystal Photonics, Wiley 2016, Computational of Photonic sensors, 2018) both are adopted references for Graduate Programs in Photonics at international Universities such as MIT, Purdue University, Indian Institute of Technology, National University of Singapore, Mansoura University and Zewail City, and 264 conference papers in international conference in photonics, many of these are invited talks, and keynote lectures, attracted external funding, from both industry and Research Councils, in the region of $ 4M, and supervised to successful completion 35 PhD students, over 70 MSc/MRes/MPhil students and 15 postdoctoral research fellows. He led the team that developed one of the world’s best comprehensive numerical packages for the analysis, design and optimization of nano-photonic devices, and subsystems, where a number of “world-first” numerical approaches have been developed. His five key papers introducing his novel numerical package; have been cited more than 400 times. His publications also have been cited more than 4000 times, with an h-index of 34 and i10-index of 118. His numerical package has been widely adopted by both academic and industrial Photonics communities to analyze, design and optimize the performance of a wide range of nano-photonic devices employed for applications in solar cells, optical telecoms, sensing, optical imaging and encryption and other applications. He has served the International Photonics Society through active contribution to the organization and technical committees of a number of international conferences. Since 2007, he has been an Associate Editor-in-Chief of the IEEE Photonics Technology Letters, and Associate Editor-in-Chief of the Journal of Optical and Quantum Electronics, and served as Guest Editor-in-Chief of J Optical and Quantum Electronics (2010), and founding member of Editorial Board of Materials Theory Journal (Springer) and acted as Reviewer for many international Photonics Journals such as IEEE J Lightwave Technology, IEEE Photonics Journal IEEE J Quantum Electronics, IEEE J Selected Topics in Quantum Electronics, IET Optoelectronics, OSA Optics Express, OSA Optics Letters, and many others. Moreover, he acted as Technical expert and Reviewer for a number of research funding councils and learnt societies such as Engineering and Physical Sciences Research Council (EPSRC), UK, Royal Society, UK, Royal Academy of Engineering, UK, National Academy of Arts and Sciences, Holland, Science and Technology Development Fund, Egypt, National Telecom Regulatory Authority (NTRA), Egypt and others.
Friday, Jan 27, 1:00 pm (PST) in-person in Henley 1010 Optical frequency combs (OFCs) – whose spectra consist of a large number of equidistant modes – stand as the cornerstone of modern optics with applications ranging from fundamental science to sensing and spectroscopy. In this pursuit, semiconductor lasers have recently gained vast attention as an electrically-driven platform for self-starting OFCs, without the need for any additional components that are necessary for standard mode-locked lasers. Here, we explain the multitude of mechanisms that arise from fast gain dynamics of these lasers leading to rich nonlinear behavior. We first concentrate on the free-running combs in Fabry-Perot resonators, which are characterized by a linear frequency chirp and a continuous-wave intensity. We reveal the conditions for the formation of these frequency-modulated (FM) combs along with the optimization techniques that increase their spectral bandwidth [1,2]. Alternatively, ring resonators support unidirectional fields, where the multimode regime occurs only in the presence of the parametric gain, allowing the sidebands to overcome the lasing threshold [3]. We show that sensitive interplay between the dispersion and resonant Kerr nonlinearity [4] leads to the emission of OFCs and the formation of localized patterns in the laser output – ultimately enabling soliton generation. [1] N. Opačak, et al., Phys. Rev. Lett. 123, 243902 (2019). [2] M. Beiser, et al., Opt. Lett. 46, 3416 (2021). [3] M. Piccardo, et al., Nature 582, 360 (2020). [4] N. Opačak, et al., Phys. Rev. Lett. 127, 093902 (2021). Nikola Opačak obtained his PhD at the Technical University of Vienna in 2022, in the group of Prof. Benedikt Schwarz. His work focuses on semiconductor lasers, nonlinear dynamics, optical frequency combs, and band structure and carrier transport modeling. Nikola is currently a PostDoc at the Technical University of Vienna at the Institute of Solid State Electronics, and a research associate in the Capasso Group at Harvard University. Friday November 4th at 1:00 pm in ESB 2001 Coherent optical technologies enable high-bandwidth communication across the globe and are fundamental to the fiber optic backbone of the internet. Due to exponential increase in demand for bandwidth, and the subsequent rise of hyperscale data centers, coherent systems are now being used for shorter links, such as between data centers, or even inside of them. In this talk, I will first briefly review trends and the evolution of coherent optical modems, highlighting Ciena’s technology and contributions. I will discuss various challenges and solutions for next-generation coherent modems used in traditional medium-haul and long-haul links. In the second part of the talk, I will discuss the transition of coherent technologies to inter- and intra-data center optical links, focusing on data center switching bottlenecks, such as frontplate density, rack power consumption, and PIC shoreline density. I’ll then briefly review the use of optical frequency combs as a potential enabling technology for future data center links. In the final part of the talk, I’ll shift gears to professional development and give a brief overview of my experience with the Stanford Optical Society, balancing priorities during grad school, and the transition to industry. Brandon Buscaino received a Ph.D. in Electrical Engineering from Stanford University in 2020 as a member of Prof. Joseph M. Kahn’s Optical Communications Group. While there, he developed novel techniques for electro-optic frequency comb generation and designed coherent optical links for next-generation co-packaged data center communications using external and integrated light sources. As president of the Stanford Optical Society, the graduate student Optica chapter, he organized community conferences, led outreach presentations at FiO+LS, and served on the Optica Student Leadership Conference planning committee. Since then, he has continued professional involvement in optics by participating in various Optica technical groups and committees as well as several Congressional Visits Days, advocating for optics and photonics funding in Congress. Since 2020, Brandon has worked predominantly with coherent optical communications technologies, such as digital coherent optical systems up to 800 Gb/s per wavelength and point-to-multipoint coherent pluggables. Currently, he is a Research Scientist at Ciena Corporation, focusing on novel applications of next-generation coherent optical communications systems and subsystems. Brandon has co-authored over a dozen journal and conference papers as well as several patents and is an active reviewer for J. of Lightwave Tech., Chin. Optics Lett., and J. on Sel. Topics in Quantum Electron. In 2021, Brandon was awarded the Kaminow Outstanding Early Career Professional Prize from Optica. In 2022, Brandon was selected to be a part of the 2022 Optica Ambassador class.
|
Mailing ListSupported ByThorlabs designs and produces a variety of optomechanical and optoelectronic components in 15 facilities around the globe. Thorlabs seeks to listen and serve its customers with over 20,000 products available.
Founded in 2018, Nexus Photonics has developed integrated photonics ready to scale. Smaller, lighter and faster, their platform outperforms industry benchmarks, and operates in an ultra-broadband wavelength range from ultraviolet to infrared to support a wide breadth of practical applications.
Archives
May 2024
Categories
All
|